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Abstract

Urine metabolites are used in many clinical and biomedical studies but usually only for a few 

classic compounds. Metabolomics detects vastly more metabolic signals that may be used to 

precisely define the health status of individuals. However, many compounds remain unidentified, 

hampering biochemical conclusions. Here, we annotate all metabolites detected by two untargeted 

metabolomic assays, hydrophilic interaction chromatography (HILIC)-Q Exactive HF mass 

spectrometry and charged surface hybrid (CSH)-Q Exactive HF mass spectrometry. Over 9,000 

unique metabolite signals were detected, of which 42% triggered MS/MS fragmentations in 

data-dependent mode. On the highest Metabolomics Standards Initiative (MSI) confidence level 1, 

we identified 175 compounds using authentic standards with precursor mass, retention time, and 

MS/MS matching. An additional 578 compounds were annotated by precursor accurate mass and 

MS/MS matching alone, MSI level 2, including a novel library specifically geared at acylcarnitines 

(CarniBlast). The rest of the metabolome is usually left unannotated. To fill this gap, we used 

the in silico fragmentation tool CSI:FingerID and the new NIST hybrid search to annotate all 

further compounds (MSI level 3). Testing the top-ranked metabolites in CSI:Finger ID annotations 

yielded 40% accuracy when applied to the MSI level 1 identified compounds. We classified 

all MSI level 3 annotations by the NIST hybrid search using the ClassyFire ontology into 21 

superclasses that were further distinguished into 184 chemical classes. ClassyFire annotations 

showed that the previously unannotated urine metabolome consists of 28% derivatives of organic 

acids, 16% heterocyclics, and 16% lipids as major classes.

Graphical Abstract

Metabolomics is used as one of the major -omics tools to tackle the complex area 

of personalized medicine and health.1 Target analysis of metabolites is an integral 

part of clinical laboratories worldwide. Conversely, untargeted metabolomics provides 
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comprehensive insights into complex metabolomes and allows for discovery of novel 

biomarkers and generating new metabolic hypothesis. Yet, untargeted metabolomics is 

challenged by very low identification rates.2,3 Since there is no single platform capable 

of capturing the entire metabolome of urine, we have employed two chromatographic 

platforms that are highly suited for untargeted metabolome analysis: hydrophilic interaction 

chromatography (HILIC; for polar metabolite profiling) and charged-surface hybrid 

chromatography (CSH, for lipidomics profiling). While lipids are usually low abundant 

in (aqueous) urine samples, recent technological advancements of high-resolution mass 

spectrometry (MS) have largely improved the comprehensive lipid profiling of cells, 

tissues, and biofluids, including urine. Lipids can serve as important biomarkers even in 

urine samples, for example for prostate cancer4 or segmental glomerulosis.5 Combined, 

metabolomics and lipidomics reveal biologically active metabolites in urine and provide 

a diagnostic chemical signature of human metabolic phenotypes. The urinary metabolome 

is associated with urological diseases, including bladder dysfunctions such as interstitial 

cystitis/bladder pain syndrome (IC).6–8 IC is characterized by chronic bladder and/or 

pelvic pain, as well as nocturia and an increase in urinary frequency and urgency.9–11 

The work presented here investigated how many urine metabolites from IC patients could 

be identified, as defined by the Metabolomics Standards Initiative (MSI),12 using freely 

available comprehensive metabolite annotation tools, novel databases, and libraries that were 

developed and used here for the first time.13

EXPERIMENTAL SECTION

Extraction.

Subjects, urine specimen collection, and clinical and pathological features of subjects were 

described in a previous paper from our laboratory.14 Deidentified urine samples were stored 

at −80 °C until further analysis. Urinary lipids were extracted with methanol and methyl 

tert-butyl ether both containing a cocktail of lipid standards.15 Water was subsequently 

added for phase separation. This extraction protocol extracts all main lipid classes 

in urine with high recoveries, specifically phosphatidylcholines (PC), sphingomyelins 

(SM), phosphatidylethanolamines (PE), lysophospha-tidylcholines (LPC), ceramides (Cer), 

cholesteryl esters (CholE), and triacylglycerols (TG).16 Lipid standards were purchased 

from Avanti Polar lipids (Alabaster, USA). After concentrating extracts to complete dryness, 

samples were reconstituted prior to LC-MS analysis as published before.17 Polar metabolites 

were retrieved by using the polar phase of the lipid extraction procedure. Samples were 

dried in a centrivap prior to a cleanup step of 50% acetonitrile and dried again. Samples 

were reconstituted for HILIC-MS analysis in an 80:20 acetonitrile:water solution containing 

internal standards from Sigma and CDN Isotopes.

Instrumentation.

All measurements were carried out on a Thermo Q Exactive instrument. For lipidomics 

measurements, 1 μL of diluted samples was separated on a Waters Acquity UPLC 

CSH C18 column (100 × 2.1 mm; 1.7 μm) coupled to an Acquity UPLC CSH C18 

VanGuard precolumn (5 × 2.1 mm; 1.7 μm). The column was maintained at 65 °C 

with a flow rate of 0.6 mL/min. The positive ionization mobile phases consisted of (A) 
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acetonitrile:water (60:40, v/v) with ammonium formate (10 mM) and formic acid (0.1%) 

and (B) 2-propanol:acetonitrile (90:10, v/v) with ammonium formate (10 mM) and formic 

acid (0.1%). The negative ionization mobile phases consisted of (A) acetonitrile:water 

(60:40, v/v) with ammonium formate (10 mM) and (B) 2-propanol:acetonitrile (90:10, 

v/v) with ammonium formate (10 mM). The separation was conducted under the following 

gradient: 0 min 15% B; 0–2 min 30% B; 2–2.5 min 48% B; 2.5–11 min 82% B; 11–11.5 

min 99% B; 11.5–12 min 99% B; 12–12.1 min 15% B; 12.1–15 min 15% B. The Q 

Exactive MS instrument was operated using positive mode electrospray ionization using 

the following parameters: Mass range, 120−1200 m/z; Sheath gas flow rate, 60; Aux gas 

flow rate, 25; Sweep gas flow rate, 2; Spray Voltage (kV) 3.6; Capillary temp, 300 °C; 

S-lens RF level, 50; Aux gas heater temp, 370 °C. Full MS parameters: Resolution, 60,000; 

AGC target, 1e6; Maximum IT, 100 ms; Spectrum data type, Centroid. Data dependent 

MS2 parameters: Resolution, 15,000; AGC target, 1e5; Maximum IT, 50 ms; Loop count, 4; 

TopN, 4; Isolation Window, 1.0 m/z; Fixed First Mass, 70.0 m/z; (N)CE/stepped (N)CE, 20, 

30, 40; Spectrum data type, Centroid.

For profiling polar compounds and biogenic amines, HILIC-Q Exactive MS/MS data 

acquisition was performed. One μL of diluted samples was separated on a Waters Acquity 

UPLC BEH Amide column (150 × 2.1 mm; 1.7 μm) coupled to an Acquity UPLC BEH 

Amide VanGuard precolumn (5 × 2.1 mm; 1.7 μm). The column was maintained at 45 °C 

with a flow rate of 0.4 mL/min. The mobile phases consisted of (A) water with ammonium 

formate (10 mM) and formic acid (0.125%) and (B) acetonitrile:water (95:5, v/v) with 

ammonium formate (10 mM) and formic acid (0.125%). The separation was conducted 

under the following gradient: 0 min 100% B; 0–2 min 100% B; 2–7.7 min 70% B; 7.7–9.5 

min 40% B; 9.5–10.25 min 30% B; 10.25–12.75 min 100% B; 12.75–17 min 100% B.

The Q Exactive MS instrument was operated using positive mode electrospray ionization 

(ESI HILIC) with the following parameters: Mass range, 60–900 m/z; Sheath gas flow 

rate, 60; Aux gas flow rate, 25; Sweep gas flow rate, 2; Spray Voltage (kV) 3.6; Capillary 

temp, 300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. Full MS parameters: 

Microscans, 1; Resolution, 60,000; AGC target, 1e6; Maximum IT, 100 ms; Number of 

scans, 1; Spectrum data type, Centroid. Data dependent MS2 parameters: Microscans, 1; 

Resolution, 15,000; AGC target, 1e5; Maximum IT, 50 ms; Loop count, 4; MSX count, 1; 

TopN, 4; Isolation Window, 1.0 m/z; Isolation offset 0.0 m/z; (N)CE/stepped (N)CE, 20, 30, 

40; Spectrum data type, Centroid.

Data Processing and Compound Identification.

The LC-MS/MS data was analyzed by MS-DIAL software.18 Detailed parameter settings 

are listed in Supplemental Table 1 (HILIC and lipidomics data processing settings). Data 

tables containing accurate masses, retention times, and peak heights were exported, and 

further analysis was performed in R and Metabox.19 Automated annotation of metabolites 

was performed separately for polar metabolites and lipids. Table S1 lists libraries, methods, 

and software used for each platform.

Metabolite annotations were achieved using a combination of different tools. On MSI level 

1, we developed and used a novel HILIC-MS/MS library of 1,102 authentic standards 

Blaženović et al. Page 4

Anal Chem. Author manuscript; available in PMC 2024 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including retention time, precursor mass, and MS/MS spectra. All spectra, retention times, 

and chromatography conditions are freely available at MassBank of North America (http://

massbank.us). Search windows were used as follows: 0.1 min RT tolerance (for the 

alignment of peaks), 0.0001 Da tolerance for the precursor masses, and 0.05 Da tolerance 

for the MS/MS spectral matching. Similarly, we used lipid retention times and MS/MS 

spectra for lipidomics identifications.15 On MSI level 2, we annotated compounds that did 

not trigger MS/MS fragmentations in data dependent mode but that were still identified 

based on accurate mass and retention time using the HILIC-MS/MS library in addition to 

manually curated lipid retention times. Moreover, MSI level 2 annotations were also based 

on accurate mass and MS/MS annotations for spectra for which no authentic retention time 

library was available, such as the NIST17, HMDB,20 GNPS,21 the new CarniBlast library, 

and the LipidBlast libraries.17,22,23 For MSI level 3 annotations, we used CSI:FingerID,24 

the NIST-Hybrid Search,25 and LipidBlast accurate mass search services.

RESULTS AND DISCUSSION

MSI Level 1 Annotations.

The number of precursors that triggered MS/MS fragmentations was sample dependent. 

Table S2 contains all 3,894 merged spectra for all samples that were aligned and processed 

by MS-DIAL software which were subsequently used for MSI level 1 and 2 annotations 

(Table 1). Compound identifications with the highest level of confidence (MSI level 1) 

were achieved using libraries of authentic standards. All library spectra and retention times 

were acquired under identical conditions as the experimental urine spectra. Specifically, a 

new HILIC-Q Exactive MS/MS library was established using 1,102 authentic compounds 

measured in positive mode. Data and metadata for this library can be downloaded from 

MassBank of North America (Fiehn HILIC). By matching experimental urine spectra 

against library retention times (RT), accurate precursor masses (m/z), and MS/MS spectra, 

overall 175 compounds were identified at MSI level 1. Specifically, we identified 72 

lipids in CSH-Q Exactive MS/MS as members of 7 lipid classes and 103 hydrophilic 

compounds using HILIC-Q Exactive MS/MS as amino acids, biogenic amines, and other 

polar compound classes (Table S2). Detailed settings and cutoffs are listed in Table S1.

MSI Level 2 Annotations.

Retention-time based libraries of authentic standards are necessarily smaller than the 

complement of available MS/MS spectra in public or licensed mass spectral libraries. 

Therefore, it is a common practice in metabolomics research to perform mass spectral 

similarity searches of experimental to library MS/MS spectra to increase the annotation rate. 

While metabolite MS/MS fragmentations are independent of chromatography conditions, 

spectra often show differences due to slightly different fragmentation parameters or different 

mass spectrometers used. In addition, many metabolites show only a few characteristic 

fragment ions, rendering the use of classic spectral similarity searches unreliable. To retain 

high confidence, we combined accurate precursor mass and MS/MS searches for all over 

queries, using 750 dot-product score (HILIC-MS/MS) and 400 reverse dot-product (CSH-

MS/MS) as lower threshold below which no further correct match hits were expected. 
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Subsequently, each spectrum was manually inspected to verify spectral matches and 

retention time matches, where available.

MassBank of North America (MoNA; http://massbank.us) currently contains over 260,000 

mass spectra from 15 individual mass spectral repositories such as MassBank, MassBank 

EU, GNPS, ReSpect, LipidBlast, MetaboBase, and HMDB, covering more than 80,000 

compounds. We combined MoNA spectra with MS/MS data from the NIST17 library, the 

largest available licensed repository with over 550,000 experimental spectra from 13,808 

chemical compounds. We merged all spectra from both resources into one.msp within 

MS-DIAL software for mass spectral similarity matching. In total, this approach yielded 480 

identified compounds on MSI level 2.

While investigating and validating MS/MS spectra, we observed many spectra that appeared 

similar to 17 acylcarnitines annotated by using LipidBlast or MoNA spectra. Acylcarnitines 

in urine serve as biomarkers for bladder cancer,26 diabetic nephropathy,27 obesity,28 and 

human kidney cancer.29 The identification of acylcarnitines has to be performed either using 

authentic reference compounds or with reference library spectra.30 However, only a few 

tandem mass spectra of acylcarnitines exist in commercial (NIST) and open mass spectral 

libraries (MassBank,31 METLIN,32 Respect DB33), covering less than 50 acylcarnitine 

structures. Conversely, when using a structure similarity search in the CAS SciFinder 

literature database, we found 453 acylcarnitine-like structures of which only 62 were 

commercially available. Such finding indicated a high chemical diversity of acylcarnitines 

that could not possibly be closed by purchasing more chemical compounds. To overcome 

this gap and identify all urinary acylcarnitines, we developed an in silico tandem mass 

spectral library of acylcarnitines using structure templates23 similar to our previous 

LipidBlast22 and FAHFA predicted MS/MS libraries.34 Here, we constructed the CarniBlast 

library of 2,400 acylcarnitine species covering a wide range of saturated, unsaturated, 

-hydroxyl, -keto, -dicarboxylic, and oxidized acyl chain substituted acylcarnitines. We 

matched all experimental MS/MS spectra from both polar and lipidomics profiling against 

the new in silico database of acylcarnitines. After removing duplicates and manually 

validating each candidate spectrum, we identified 67 novel acylcarnitines through the 

CarniBlast library in addition to the 17 acylcarnitines obtained by LipidBlast and MoNA. 

Detailed settings and cutoffs are listed in Table S1.

All urinary metabolomic data were acquired by data-dependent MS/MS. Yet, we used 

retention-time based MS/MS libraries such as the new HILIC-Q Exactive MS/MS 

repository. For lipids, we have recently shown35 that compound annotations can be based 

on accurate precursor mass and retention time alone with high confidence. Using these two 

orthogonal parameters (m/z and RT), six further acylcarnitines were annotated at MSI level 

2. In the same manner, we assigned 201 further compounds that were too low abundant to 

trigger MS/MS fragmentations but that were covered in our m/z and RT libraries that were 

acquired under the same experimental conditions.

In combination, we identified 578 metabolites at MSI level 2 confidence (39 lipids, 85 

acylcarnitines, and 454 hydrophilic compounds). Metadata such as dot product, reverse dot 
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product scores, number of matching ions, and MS-DIAL calculated MS2 similarity have 

been taken into account. Detailed results are listed in Table S2.

MSI Level 3 Annotations.

When combining compound annotations on MSI level 1 and 2, the 753 compound 

annotations only covered 19.3% of the acquired urinary MS/MS spectra (Figure 1). While 

this number of annotated compounds is already significantly higher than most other studies 

on urine metabolomics,36,37 it is worrisome that more than 80% of all MS/MS spectra 

remain unannotated in metabolomics screens. Many biologists will focus their attention 

only on identified compounds and not even perform statistical assessments on complete 

metabolome data, including unknowns. Yet, it appears very likely that the fraction of more 

than 80% unknowns might include very important biomarkers or signatures of diseases, 

food patterns, exposome compounds, or other significant chemicals. We therefore used 

three tools to investigate this dark matter of metabolomics38 closer: (a) accurate mass 

search, (b) structure elucidation tools, and (c) mass spectral library hybrid search. We 

used the most exhaustive MS/MS files for MSI level 3 annotations, using raw MS/MS 

spectra from individual IC patients for each stepped collision energy to enable best-possible 

annotations. Spectra were exported as either mgf or msp files and used in the different 

software programs. For HILIC-MS/MS analyses, we used between 5,192 and 6,447 MS/MS 

spectra; for CSH-MS/MS lipidomics analyses, the number of spectra ranged from 5,705 to 

7,050 MS/MS spectra per sample (Table 1 and Table S2). The number of raw spectra is 

higher than in the MS-DIAL processed file because MS-DIAL merged the stepped collision 

energies during data acquisition.

First, we used precursor mass lookups. In general, simple mass lookups yield many false 

discoveries due to a plethora of isomers and isobars at a given accurate mass level. This 

problem is especially pronounced in HILIC-MS for which hardly any constraint can be 

applied with respect to the number of possible chemicals. Yet, for lipidomics assays, lipids 

can already be assigned to specific lipid classes with some level of confidence based on m/z 
and retention time (in relation to MSI level 1 and 2 annotated lipids within the same study). 

Additional structure information on such lipid class annotations and their acyl chains cannot 

be made using accurate mass alone. We extracted m/z precursor information from the MS-

DIAL output in positive ionization mode and used the m/z lookup macro within LipidBlast 

v49 to assign additional lipids. We used a 5 mDa mass tolerance for lipid assignments 

based on the mass accuracy of the Q Exactive instrument. This way, an additional 96 lipid 

annotations were obtained for the lipidomics data set in positive ionization mode.

Second, we used cheminformatics tools to annotate accurate mass HILIC-MS/MS spectra 

to likely chemical structures. A range of software tools has been published such as MS-

FINDER,39 Sirius, CFM-ID,40 and others. Here, we used two programs, Sirius 4.0 with 

CSI:FingerID interface24 and the new NIST17 hybrid-search.25 Sirius/CSI:FingerID scored 

highly during the latest CASMI structure identification challenges41,42 but has never been 

applied to urinary metabolomics. The NIST17 hybrid-search software was released after 

the CASMI challenges but offers advantages by greatly expanding the utility of existing 

mass spectral libraries. For Sirius/CSI:Finger ID, MS/MS spectra were exported as a MGF 
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file from each raw file using the MSConvert program. The largest MGF file contained 

6,447 MS/MS spectra. Formulas were assigned at 10 ppm search windows, retaining the 10 

best formula candidates. Using Sirius, spectra were processed within 2 min on a 16 CPU 

machine, assigning formulas to a total of 6,184 features (96%). Subsequently, CSI:FingerID 

performed spectral fingerprint matching via a Web service to annotate isomer structures. 

Within 5 min processing time, 728 MS/MS spectra were assigned to chemical structures 

in the biodatabase, a filtered version of Pubchem containing over 270,000 structures of 

biological interest, and 1,557 MS/MS spectra were assigned to chemicals in the much 

larger PubChem database. Scored results of all isomeric structures were exported as CSV 

files. For structures returned by biodatabase searches, CSI:Finger ID yielded up to 130 

results per MS/MS scan and up to 10,000 structure candidates per MS/MS spectrum in 

PubChem queries. Time-consuming manual investigations have to be performed to select 

the most likely structures. To test CSI:Finger ID accuracy, we selected 103 MS/MS spectra 

from the urinary HILIC-Q Exactive MS/MS data set that were unambiguously assigned by 

authentic standards and tested these spectra within 5 ppm mass accuracy and a biodatabase 

structure query. Using our publicly available HILIC library (see above), 41 compounds 

(40%) were correctly annotated by CSI:Finger ID as top hit, and 54 MS/MS spectra (52%) 

were correctly assigned within the top 3 isomer candidates. Detailed results are given in 

Table S3. CSI:FingerID is not optimized for use in lipidomics MS/MS spectra.

Third, we used the novel NIST17 hybrid search25 that combines mass spectral library-based 

scoring with calculating fragment and precursor mass shifts for chemical modifications 

of library structures. Such a tool mimics the experience of well-trained chemists43 

because known biochemical modifications such as methylations or acetylations produce 

epimetabolites that are removed from their classic functions in canonical metabolic 

pathways.44 Four examples of how the NIST17 hybrid search works are given in 

Figure 2 for head-to-tail MS/MS spectral comparisons of methyladenosine/adenosine, 

phosphothreonine/threonine, hydroxyarginine/arginine, and acetylmethionine/methionine. 

Spectra of modified metabolites show distinct shifts in precursor masses and fragments 

when comparing to nonmodified library spectra. Yet, the NIST17 hybrid search correctly 

associated the modified spectra with their best scoring related library spectra.

We exported all lipidomics and HILIC-MS/MS spectra from 43 interstitial cystitis patients 

from MS-DIAL to the NIST pepSearch software and used the NIST17 hybrid search 

function. The software supports batch processing, enables users to include or exclude 

specific MS/MS spectra, and yields quick overviews of the complement of chemical 

structures in mass spectral profiling studies. Results are given in Table S2. Within 10 min 

processing time, 95% of all spectra were assigned with structure annotations and compound 

names, including a set of confidence scores such as forward and reverse dot products 

and a probability score. Hybrid search annotations must be treated with caution as they 

do not represent an identification but rather a nearest known neighbor to the unknown 

spectrum. While in many cases NIST17 hybrid searches give correct results (Figure 2), 

overall results highlight a high probability of chemical class annotations (MSI level 3) 

rather than exact structures. We therefore used these results for exactly this purpose, 

classifying the thousands of patient urinary MS/MS spectra to chemical classes. For this 

purpose, we implemented a batch search version of the automated chemical hierarchy 
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classification system ClassyFire45 (https://cfb.fiehnlab.ucdavis.edu). ClassyFire requires 

International Chemical Identifiers (InChI keys) as input.46 Today, InChI keys are a standard 

tool in all chemical and biochemical databases to assign and compare chemical structures 

with machine-readable, unique keys. The ClassyFire Batch search utilizes the ClassyFire 

API to look up provided InChIKeys and, if no match is found, to query its nonstereo form. 

It yields a tabular CSV version of the results. We used the online tool Chemical Translation 

Services (CTS)47 to convert chemical names from the NIST17 hybrid pepSearch results 

to InChI keys. This conversion reduced the compound list by ∼1% because some NIST17 

hybrid search chemical names are not yet included in PubChem or the other 200 chemical 

databases that support the CTS tool. Hence, of the average number of 5,250 MS/MS spectra 

found per patient in lipidomics and HILIC-MS/MS, about 95% of all spectra were now 

annotated by exact chemical structures or by chemical classes (MSI level 3, Figure 1). 

Results of classifications are organized into Kingdom, Superclass, Class, Subclass, and 

two parent levels. Detailed results are given in Table S4, with varying chemical classes 

present in urines of different patients. An average MSI level 3 classification is given in 

Figure 3 using the superclass and subclass classifications as defined by ClassyFire. Roughly 

one-third of the urinary metabolome was classified as chemicals containing aromatic rings 

or heterocycles, one-third was classified as compounds containing ketones, alcohols, or 

acids, while the remaining one-third consisted of lipids, phenylpropanoids, and nitrogenous- 

or sulfur containing organics. As expected, organic phosphates, organometallic, or other 

compound classes comprised less than 1% of the urinary metabolome.

CONCLUSION

Unlike proteomic MS/MS spectra assignments, the field of metabolomics currently 

lacks generally accepted and validated automated calculations of compound identification 

confidence levels with false-discovery rate assessments. As remedy, structure annotation in 

untargeted MS/MS metabolomics reports must be annotated with MSI confidence levels 

to detail which metabolites can be trusted and used for metabolic pathway annotations 

(MSI level 1 and 2), especially if annotated spectra use accurate mass information and 

manual curation. While the majority of acquired MS/MS spectra cannot be annotated with 

certainty to specific chemicals, Sirius/CSI:Finger ID and NIST17 hybrid search results 

yield many structure assignments that are worthy to be validated by acquiring spectra 

from corresponding authentic chemicals. In addition, MSI level 3 chemical classes can be 

ordered by ClassyFire and used for chemical class enrichment statistics,48 for example, in 

biomarker discovery studies. Moreover, MSI level 3 classifications may yield differences in 

urinary chemicals that detail differences in subjects due to diet and chemical exposure in 

epidemiology studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Categorized overview of the complete annotation of MS/MS spectra of human urine 

metabolomes based on MSI level 1, 2, and 3 confidence scores.
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Figure 2. 
Head-to-tail comparison of MS/MS spectra of distinct shifts in spectra of modified 

versions of canonical metabolites. (A) methylation: 1-methyladenosine to adenosine, (B) 

phosphorylation: phosphothreonine to threonine, (C) hydroxylation: hydroxyarginine to 

arginine, (D): acetylation: N-acetylmethionine to methionine.
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Figure 3. 
Structural categorization of compounds present in urine samples of 43 subjects diagnosed 

with interstitial cystitis. Chemicals are structured according to the “Superclass level” of the 

ClassyFire classification system.
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Table 1.

Results of Comprehensive Annotation of Urinary Metabolomics and Lipidomics MS/MS Spectra

chromatography and databases type of matching
MSI level of 
annotation no. of annotations

HILIC precursor m/z, RT experimental library MS/MS MSI level 1 103

lipidomics m/z, RT, experimental + in silico library MS/MS 72

HILIC: MoNA+NIST17 precursor m/z, experimental library MS/MS MSI level 2 440

HILIC precursor m/z and RT 13

lipidomics: CarniBlast m/z, in silico library MS/MS 18

HILIC: CarniBlast precursor m/z, in silico library MS/MS 107

lipidomics: mzRT lookup precursor m/z with RT curation MSI level 3 96

HILIC and lipidomics: NIST17 hybrid 
search

MS/MS (hybrid and experimental library) 6,447

HILIC: Sirius/CSI:FingerID precursor m/z and in silico predicted MS/MS 728
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